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Abstract
The truncation of angular momentum expansions in the Korringa–Kohn–Rostoker
Green-function method introduces a charge normalization error and disallows calculation of the
Fermi level and the charge density in a consistent manner. It is shown how this error can be
compensated by Lloyd’s formula, in particular if this formula is applied to normalize the Green
function everywhere along the complex energy contour used for the integration of the charge
density. The advantages of the improved normalization over the conventional one are illustrated
by density-functional calculations for CrAs, the dilute magnetic semiconductor Ga1−xMnxN
and a Si12Fe8 multilayer. It is shown that only the improved normalization leads to correct
integer values of the magnetic moments in the half-metallic state of CrAs and Ga1−x MnxN and
to a correct band alignment of Fe and Si states in the multilayer.

1. Introduction

The Korringa–Kohn–Rostoker (KKR) Green-function method
requires truncations in angular momentum for the scattering
t matrices and for the infinite sums, which appear in the
multiple-scattering representation of the Green function. The
angular momentum cut-off used for the t matrices is a well
controlled numerical approximation, which usually rapidly
converges with the number of angular momentum components
taken into account. This cut-off simply means that the
potential is approximated by a projection potential which is
restricted to the lower angular momentum components of the
wavefunctions. This approximation is not problematic since
it goes along with other approximations for the potential, for
instance the ones arising from numerical details and the choice
of density-functional exchange–correlation potentials.

In contrast, the truncation of the Green-function
representation presents a real problem. Because higher
angular momentum contributions to the charge density
are not included, the charge density is not normalized
correctly. In metals the small missing or extra charge can be
counterbalanced by an adjustment of the Fermi level and the
required shift of the Fermi level is usually small and often
negligible. In insulators and semiconductors, however, the
charge does not change if the Fermi level is varied inside the

band gap and the adjustment inevitably puts the Fermi level
either into the valence or conduction band. The incorrect
position of the Fermi level can lead to systematically incorrect
physical properties because it makes the systems metallic and
their semiconducting or insulating behaviour is lost.

The problem has been recognized in the past [1–7] and
Lloyd’s formula has been suggested as a remedy. Lloyd’s
formula can be used to determine the Fermi level since it
directly gives the integrated density of states. By implicit
summation over all angular momenta Lloyd’s formula avoids
the error which is caused by the truncation of the infinite sums
in the multiple-scattering representation of the Green function.
However, one difficulty remains if Lloyd’s formula is used to
determine the Fermi level. Lloyd’s formula cannot be used for
the charge density but only for the total charge integrated over
all space. If the Fermi level determined by Lloyd’s formula is
used together with the charge density calculated in the usual
way from the truncated angular momentum expansion of the
Green function, then this charge density is not normalized
correctly and charge neutrality is prevented. Therefore, the
charge density must be modified and several modifications
have been suggested. In muffin-tin calculations the missing
or extra charge can be hidden in the interstitial region, but in
atomic sphere or full potential calculations this option is not
available. Here the missing or extra charge can be put into
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the highest angular momentum component or can be added
as a constant average in all space. Another possibility is the
multiplication of the charge density by a constant factor. A
common disadvantage of these modifications is that they do
not distinguish between states which are mainly responsible
for the charge density normalization error and states with small
contributions to the error. For instance, if the main error arises
from the semi-core states of one atom in the crystal, it is
desirable that only these states are renormalized, but not all
states of all atoms.

The purpose of this paper is to present a more satisfactory
modification for the charge density. The idea is to apply a
normalization in a similar way as is done in electronic structure
calculations with basis-set methods. In basis-set methods
a finite subset of basis functions is chosen from an infinite
complete set and used for the expansion of the wavefunctions
(eigenfunctions). For different subsets the wavefunctions
contain different partial contributions from the individual basis
functions, but the overall normalization of the wavefunctions
is always kept at the correct value and the charge density
calculated by a sum over wavefunction contributions is always
normalized correctly. A basically similar procedure is used in
the traditional, wavefunction-based KKR method, where the
infinite-dimensional KKR matrix is truncated to the subspace
of low angular momenta and the wavefunctions are normalized
in this subspace [8]. This procedure transfers the weight of
neglected higher angular momenta to the lower ones taken
into account and leads to a correct normalization of the charge
density.

The KKR Green-function method avoids wavefunctions
for the calculation of the charge density, which is obtained
alternatively by energy integration over the Green function,
usually in the complex energy plane. The use of the Green
function instead of wavefunctions provides an economic and
practical way to treat solids with reduced symmetry, for
example impurities in otherwise ordered host crystals, surfaces
or layered systems, since the Green function of a system is
related to the Green function of simpler reference system by
an algebraic Dyson equation. On the other hand, the use
of the Green function introduces the charge normalization
error discussed above. Recently it was proposed [7] that the
normalization error could be compensated if the values of the
KKR Green function at each integration mesh point along
the complex energy contour are multiplied with appropriate
factors and that these factors could be determined by the energy
derivative of Lloyd’s formula. However, it was not clear how
the divergence arising from the real part of the Green function
along the contour could be treated in a satisfactory manner.

The aim of the present work was to find a way to deal
with the divergence of the real part and to investigate how
the calculated results are affected if normalization factors
determined by the derivative of Lloyd’s formula are used
to normalize the KKR Green function. After giving the
basic equations in section 2, the treatment of the divergence
is explained in detail in section 3. Section 4 contains
the numerical details and section 5 is used to illustrate the
advantage of the proposed normalization for the calculated
spin moments and densities of states of the ferromagnetic half-
metal CrAs, the dilute magnetic semiconductor Ga1−x Mnx N

and a Si12Fe8 multilayer. The main result is that the proposed
normalization leads to correct integer values for the moments
in the half-metallic states of CrAs and Ga1−x Mnx N and to a
correct band alignment of Fe and Si states in the multilayer.

2. Basic equations

The KKR Green-function method determines the charge
density ρ around a given atomic position Rn from the
imaginary part of the Green function G by energy integration
as

ρ(r + Rn) = − 2

π
Im

∫ EF

−∞
dEG(r + Rn, r + Rn; E) (1)

or, to take advantage of temperature broadening, as

ρ(r+Rn) = − 2

π
Im

∫ ∞

−∞
dE f (E, EF, T )G(r+Rn, r+Rn; E),

(2)
where r denotes cell-centred coordinates and f (E, EF, T ) =
(1 + exp(β(E − EF)))

−1 the Fermi–Dirac function for inverse
temperature β = (kT )−1 and Fermi level EF. Atomic units
are used throughout this paper and the factor 2 arises from
spin degeneracy, which is assumed to simplify the following
equations. The extension to spin-polarized calculations is
straightforward. A powerful technique to calculate (1) and
(2) is contour integration in the complex energy plane [9, 10].
Away from the real energy axis the integrands are smooth
functions of energy because of the analytical behaviour of
the Green function. Therefore, the use of complex energies
considerably reduces the numerical effort, in particular for
periodic systems, where many fewer k points are required for
Brillouin-zone integrations. Numerically the integrals in (1)
and (2) can be evaluated by integration rules of the form

ρ(r + Rn) = − 2

π

∑
i

Im[wi G(r + Rn, r + Rn; Ei)] (3)

with suitably chosen complex valued integration points Ei

and weights wi , which depend on the Fermi level EF. For
T �= 0 the integration points conveniently include some of
the Matsubara energies En = EF + (2n − 1)iπkT, n =
1, 2, . . .. The Green function for equal space arguments can
be expressed as

G(r + Rn, r + Rn; E) =
∞∑
L

Rn
L (r; E)Sn

L(r; E)

+
∞∑

L L ′
Rn

L(r; E)Gnn
L L ′(E)Rn

L ′(r; E), (4)

where the notation of [7, 11] is used with the usual abbreviation
L for the pair l and m of angular momentum indices. Rn

L(r; E)

and Sn
L (r; E) denote regular and irregular single-scattering

solutions and Gnn′
L L ′(E) Green-function matrix elements, which

can be obtained from the matrix elements Gr,nn′
L L ′ (E) of a

suitably chosen reference system by an algebraic Dyson
equation. The position of the Fermi level EF is determined
by the condition that the total charge

Q =
∑

n

∫
n

dr ρ(r + Rn) (5)
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has the required value. For instance, in charge neutral
systems the electronic charge Q must cancel the sum of
nuclear charges. The problem in standard KKR Green-function
calculations arises because the multiple-scattering expression
(4) is truncated as

G̃(r + Rn, r + Rn; E) =
lmax∑

L

Rn
L (r; E)Sn

L(r; E)

+
lmax∑
L L ′

Rn
L(r; E)Gnn

L L ′(E)Rn
L ′(r; E) (6)

with a finite angular momentum cut-off lmax and because the
charge density is then approximated by

ρ̃(r + Rn) = − 2

π

∑
i

Im[w̃i G̃(r + Rn, r + Rn; Ẽi)]. (7)

Here the integration points Ẽi and weights w̃i differ from
Ei and wi , since they depend on a changed Fermi level ẼF

determined by the condition that total charge

Q̃ =
∑

n

∫
n

dr ρ̃(r + Rn) (8)

agrees with the required value Q. In insulators and
semiconductors this condition can be satisfied only if the Fermi
level ẼF is shifted into the valence or conduction band with
the unpleasant consequence that these systems are treated as
metals. Varying ẼF inside the band gap has a negligible effect
on Q̃ and cannot be used to satisfy the condition Q̃ = Q.

The error for the total charge arising from the truncation
in (6) is avoided if the total charge is calculated by the use of
Lloyd’s formula

N(E) = Nr (E) + 2

π

∑
n

ln det |�αn
L L ′(E)|

− 2

π
ln det |δnn′

L L ′ − Gr,nn′
L L ′ (E)�tn′

L L ′(E)|, (9)

here given in the notation of [7, 12], according to the
expression

Q = Im
∫ ∞

−∞
dE f (E, EF, T )n(E) =

∑
i

Im[wi n(Ei)]. (10)

Here n(E) denotes the energy derivative of N(E) and can be
understood as a generalization of the density of states into the
complex plane since Im n(E) agrees with the density of states
for real energies. In (9) the quantities Nr (E) and Gr,nn′

L L ′ (E) are
the ‘integrated density of states’ and the Green-function matrix
elements of a reference system. The changes �tn

L L ′(E) and
�αn

L L ′(E) of the t and α matrices at site n are defined with
respect to the reference system by integrals over products of
regular or irregular single-scattering solutions as described in
detail in the appendix.

It is clear that (9) cannot be evaluated without angular
momentum truncation of the �t and �α matrices. However,
contrary to the lmax truncation in (6), the neglect of matrix
elements with l > lmax in �t and �α causes no difficulty,
since it simply means a replacement of the potential by a
projection potential acting in the subspace l � lmax. In this

sense formula (9), which can be evaluated with matrices of
finite dimension in angular momentum, delivers exact results
so that for the projection potential Lloyd’s formula always
gives the correct charge Q with its integer value if EF is varied
inside the band gap.

Note that for periodic crystals with an infinite number of
atoms (9) cannot be used directly because it gives an infinite
result. Then N(E) defined per unit cell as

N(E) = Nr (E) + 2

π

∑
ν

ln det |�αν
L L ′(E)|

− 2

πVBZ

∫
BZ

dk ln det |δνν′
L L ′ − Gr,νν′

L L ′ (k; E)�tν′
L L ′(E)|

(11)

is used, where the integral is over the Brillouin zone and the
site indices ν, ν ′ are restricted to the basis sites in the unit cell.

It is now an important question how the Fermi level
determined by Lloyd’s formula can be made consistent with
the charge density. The difficulty is that Lloyd’s formula can
be used only for the space integrated total charge but not for
the space resolved charge density. Thus the truncation in (6)
can only be avoided for the determination of EF, but not for
the calculation of the charge density. If the correct Fermi
level EF and the resulting mesh points Ei and weights wi are
used together with the truncated Green function (6), the charge
density (3) is not normalized correctly. The central idea of this
paper is the introduction of normalization factors λi along the
integration contour and the calculation of the charge density as

ρλ(r + Rn) = − 2

π

∑
i

λi Im[wi G̃(r + Rn, r + Rn; Ei)] (12)

with integration points Ei and weights wi consistent with the
Fermi level determined by Lloyd’s formula. The factors λi are
determined by the condition

− 2

π
λi

∑
n

∫
n

dr Im[wi G̃(r + Rn, r + Rn; Ei)]
= Im[wi n(Ei )], (13)

where n(E) is the exact energy derivative of N(E) given by
(9) or (11). If both sides of (13) are summed over i , the use of
(12) and (10) leads to

∑
n

∫
n

dr ρλ(r + Rn) = Q, (14)

which shows that the charge density ρλ gives the correct charge
and thus is consistent with the Fermi level determined by
Lloyd’s formula.

3. Treatment of divergent terms

Unfortunately, the simple idea expressed by (12) and (13)
cannot be applied straightforwardly in complex contour
integrations. For complex contours the weights wi are
complex quantities and thus both real and imaginary parts of G̃
contribute. Here it is important to realize that the real part of (6)
diverges for lmax → ∞. The divergence arises from the first

3
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sum and is a consequence of the source term in the differential
equation [−∇2

r + V (r) − E]G(r, r′; E) = −δ(r − r′) for the
Green function. Since the real part of G̃ increases towards
infinity with increasing lmax, the factors λi determined by use
of (13) vanish in the limit lmax → ∞. It is clear that such
a limiting behaviour is not the desired result, since useful
normalization factors are expected to satisfy λi = 1 in the limit
lmax → ∞ so that they become less and less important with
increasing lmax. To obtain such factors, the contribution of a
suitably chosen reference system can be subtracted from both
sides of (13), since by subtraction the divergence is cancelled.
The easiest reference system is potential free space with the
Green function G0 which is given in all cells n for equal space
arguments by

G0(r + Rn, r + Rn; E) =
∞∑
L

JL(r; E)HL(r; E). (15)

Here JL(r; E) = jl(r
√

E)YL(r) and HL(r; E) =
−i

√
Eh(1)

l (r
√

E)YL(r) are the ‘single-scattering’ solutions
in free space which are defined as products of spherical
harmonics YL with spherical Bessel functions jl and Hankel
functions h(1)

l . Contrary to (4) no double sum appears in (15)
because the on-site Green-function matrix elements G0,nn

L L ′ (E)

vanish for potential free space. An equation for free space,
which can be subtracted from (13) to achieve a cancellation of
the divergence, is given by

− 2

π

∑
n

∫
n

dr Im[wi G̃
0(r + Rn, r + Rn; Ei)]

= Im[wi n
0(Ei )] − Im[wi�n0(Ei )]. (16)

Here G̃0 is defined by truncating the sum in (15) to terms
in the subspace l � lmax and n0(E) denotes the energy
derivative of the ‘integrated density of states’ N0(E) for free
space. Contrary to (13) the last equation does not contain
normalization factors. The effect of the truncation is explicitly
taken into account by the last term

Im[wi�n0(Ei )]
= − 2

π

∑
n

∫
n

dr Im

[
wi

∞∑
l>lmax

JL(r; Ei)HL(r; Ei)

]
. (17)

It would be helpful to avoid the infinite sum in this equation.
However, as discussed in the appendix, this does not seem to
be possible. Fortunately, the contribution of (17) to the total
charge is rather small, for instance if lmax = 3 is used it is
smaller than 0.0006 electrons per atom for the materials studied
below. Thus the procedure proposed here for improving the
charge density normalization consists of two steps. In the
first step (17), which includes the higher angular momentum
contributions of the free space Green function, is neglected and
preliminary factors λ


i are determined by

− 2

π
λ


i

∑
n

∫
n

dr Im[wi G̃(r + Rn, r + Rn; Ei)]

= Im[wi n(Ei )] − Im[wi n
0(Ei)]

+ 2

π

∑
n

∫
n

dr Im[wi G̃
0(r + Rn, r + Rn; Ei)], (18)

where the difference of n(Ei) and n0(Ei ) is directly given by
the energy derivative of Lloyd’s formula (9). In the second step
the preliminary factors are scaled as

λi = λ

i Q/Q
, (19)

where Q is the charge calculated by Lloyd’s formula and Q


the charge calculated according to (12), but with factors λ

i

instead of λi . This procedure seems to be well justified since
the relative change between Q and Q
 was always smaller than
0.01% in the calculations for the materials studied below.

4. Numerical details

The calculations were carried out with the spin-polarized
relativistic tight-binding (TB) KKR package [13] in a modified
version adapted for the evaluation of Lloyd’s formula and for
the normalization procedure explained above. The program,
which is based on the screened KKR formalism [14–16] as
described in [17, 18], uses a partitioning of space into Voronoi
cells around atomic positions and an expansion of potential
and charge density into spherical harmonics up to 2lmax.
Charge density integrals over cells were done as described
in the appendix by the use of shape functions [19], which
are expanded into spherical harmonics [20, 21]. To improve
the convergence of the spherical harmonic expansions, the
zincblende geometry of the studied systems was described by
face-centred-cubic unit cells with two occupied and two empty
basis sites along the (111) direction. In this way the geometric
arrangement of all sites represents a body-centred-cubic lattice
and the Voronoi cells agree with usual Wigner–Seitz cells of
this lattice. The screened (TB) structure constants Gr,νν′

L L ′ (k, E)

were determined in real space by clusters consisting of 169
repulsive muffin-tin potentials with height 8 Ryd in the
appropriate body-centred-cubic arrangement. The single-
scattering solutions Rn

L and Sn
L were calculated by first solving

the radial Schrödinger equation for the spherical part of the
potential and then iterating a Born series (up to fourth order) to
include the non-spherical part as described in [18, 22].

The calculations were done for a non-zero electronic
temperature T = 400 K with a complex energy integration
contour (for details see the appendix) and the mesh points
on the contour were chosen to be dense enough that total
energies and magnetic moments were calculated with errors
per atom smaller than 0.01 mRyd and 0.0001 μB. For this
accuracy a total of 40 mesh points was enough for CrAs and
the Si12Fe8 multilayer, whereas 48 mesh points were necessary
for Ga1−xMnxN due to the 3d states of Ga, which were treated
as valence states inside the integration contour. The 3d states
of As, the 3s and 3p states of Cr, Mn, Fe, Ga and As, the
2s and 2p states of Si and the 1s states of N, as well as all
deeper lying states were treated in an atomic fashion using
the spherical part of the potential confined to non-overlapping
spheres. All higher lying states, in particular the 3d states of
Ga, the 4s states of As and the 2s states of N, were included in
the contour.

The energy derivative of Lloyd’s formula was calculated
by exploiting the Riemann–Cauchy conditions for analytical

4



J. Phys.: Condens. Matter 20 (2008) 035220 R Zeller

functions, which state that any analytical function f (z) =
u(z) + iv(z) of the complex variable z = x + iy with real u(z)
and v(z) must satisfy the equations du

dx = dv
dy and du

dy = − dv
dx .

This means that the derivative of (9) and (11) can be obtained
as

dN(E)

dE
= dReN(E)

dReE
− i

dReN(E)

d ImE
(20)

by derivatives of the single-valued real part of N(E) in the
directions parallel and perpendicular to the real axis. In
this manner the multivalued imaginary part of the complex
logarithm with the usually difficult determination of its correct
branch was avoided [7]. The derivatives in (20) were
evaluated by numerical differentiation with a symmetric two-
point formula

dN(E)

dE
= 1

2h
[N(E + h) − N(E − h)] (21)

with the step size chosen as h = πkT/100, which leads to
accurate results as shown in [7].

For the Brillouin-zone integration a uniformly distributed
k-point mesh was used and the number of k points was chosen
so that calculated total energies and magnetic moments were
converged within 0.01 mRyd and 0.0001 μB per atom. It
has been observed [7, 23] that Lloyd’s formula requires a
dense k-point mesh for the slowly converging Brillouin-zone
integration. Since free space has partially occupied bands at
all positive energies, the slow convergence for N(E) − N0(E)

in (11) occurs not only for energies in valence and conduction
bands but also in gaps as a consequence of the metallic like
behaviour of N0(E). Here a repulsive reference system, which
has no eigenstates in the relevant energy range, can improve the
convergence of the Brillouin-zone integration considerably [7].
In the present work a repulsive system consisting of muffin-tin
potentials of height 8 Ryd was used to calculate N(E)−N0(E)

by the difference of N(E)− Nr (E) and Nr (E)− N0(E). Here
N(E)−Nr (E) converges sufficiently well and Nr (E)−N0(E)

can be calculated using many k points since the repulsive
system is equivalent to a body-centred cubic structure with
only one atom per unit cell.

Density-functional theory was used for all calculations
with the local-density approximation (LDA) in the form
given by Vosko et al [24]. Since the charge density
normalization explained above is applicable for any choice of
the exchange–correlation potential, the LDA was preferred to
avoid the usually cumbersome numerical treatment of more
sophisticated exchange–correlation potentials. To simplify the
calculations further, all relativistic effects were also neglected.

5. Results and discussion

The advantages of the improved charge density normalization
are now illustrated for some model systems, for the transition-
metal pnictide compound CrAs, which becomes a half-
metallic ferromagnet if it is grown in the zincblende
structure epitaxially on GaAs(100) substrates [25], for the
semiconductor GaN doped with Mn impurities and for a
multilayer system consisting of Si and Fe layers. CrAs was
chosen to illustrate that the proposed normalization leads to

Table 1. Calculated moments for CrAs at different lattice
parameters. The moments M̃ , Mλ and Mλ are obtained from the
charge densities ρ̃, ρλ and ρλ defined in the text.

a (nm) M̃ (μB) Mλ (μB) Mλ (μB)

0.5338 2.3031 2.2889 2.2862
0.5393 2.3814 2.3788 2.3748
0.5448 2.5030 2.5091 2.5042
0.5503 2.6583 2.6641 2.6588
0.5558 2.8321 2.8346 2.8297
0.5614 2.9371 2.9670 2.9652
0.5669 2.9505 2.9981 2.9980
0.5724 2.9502 2.9999 2.9999
0.5779 2.9493 3.0000 3.0000
0.5834 2.9485 3.0000 3.0000

integer moments, which directly reveal the half-metallic state
at expanded volume, whereas in previous KKR Green-function
calculations [26, 27] additional band structure calculations
or density-of-states inspections were necessary to find half-
metallic states. Mn-doped GaN was chosen to show that the
proposed normalization prevents large errors of the magnetic
moment, which arise if charge neutrality is obtained by an
adjusted Fermi level. These error are particularly large for
small Mn concentration since the incorrect normalization of
all host states must be compensated by a dilute number
of available impurities. Finally, the SiFe multilayer was
chosen to illustrate that in semiconductor–metal junctions a
correct alignment of the electronic states in the semiconducting
and metallic regions is obtained if normalization factors λi

determined by (18) and (19) are used, whereas an adjustment
of the Fermi level leads to an even qualitatively incorrect band
alignment.

For comparison the results presented below were
calculated by using three different charge densities ρ̃, ρλ

and ρλ, which differ by the method applied to obtain charge
neutrality. Here ρ̃ denotes the charge density calculated with
a simple Fermi level shift, while ρλ and ρλ denote charge
densities calculated with normalization of the Green function
along the complex energy integration contour. For ρλ the
normalization factors were obtained by (18) and (19), whereas
for ρλ a mesh point independent ‘average’ factor λ = Q/Q̃
was used, which means that the charge density obtained from
the truncated Green function is simply multiplied by λ. Here Q
is the charge calculated by Lloyd’s formula and Q̃ the charge
calculated by (7) and (8), but with mesh points Ei and weights
wi , which are appropriate for the correct Fermi level. Note that
for the present spin-polarized calculation the normalization
factors are determined for the spin-resolved Green function,
which makes them different for the two spin directions.

5.1. CrAs

The calculated magnetic moments per zincblende unit cell
are shown in table 1. The moments increase up to a lattice
parameter a = 0.5669 nm and are approximately constant
at larger lattice parameters. Here the expected integer value
of 3.00 μB, characteristic for a half-metallic ferromagnet, is
obtained if Lloyd’s formula is used, whereas the moments
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Figure 1. Calculated total energy for CrAs as a function of the lattice
parameter. The dashed, solid and dotted lines are for the charge
densities ρ̃, ρλ and ρλ defined in the text and were obtained by fits to
a Birch–Murnaghan equation of state. The crosses indicate the
calculated results.

saturate at a non-integer value of about 2.95 μB if the Fermi
level is adjusted. The equally good performance of the charge
densities ρλ and ρλ is not surprising, since integer moments are
a direct consequence of an integer number of minority states.
This integer number is guaranteed by Lloyd’s formula alone, if
the Fermi level is in a gap of these states, and is not changed
if different normalization methods are chosen to make the
charge density consistent with the Fermi level. Table 1 shows
that the transition to a half-metallic state occurs just above
a = 0.5669 nm. This is somewhat larger than in other recent
density-functional calculations (see, for instance, Sasioglu
et al [28] and references cited therein) which, however,
use different approximations like spherical potentials, scalar
relativistic solutions of the Schrödinger equation or generalized
gradient approximations for exchange and correlation and thus
cannot be compared directly with the present calculations.

The effect of the different charge densities ρ̃, ρλ and ρλ on
the calculated equilibrium properties of CrAs was investigated
by total energy calculations. For this purpose the total energy
was calculated for seven lattice parameters in the vicinity of
the estimated equilibrium lattice parameter a = 0.550 nm.
To reduce inaccuracies arising from changes of the atomically
treated core states [29], these states were always confined to
muffin-tin spheres with the same radius 2.18 aB . The results,
which are shown in figure 1 by crosses, were fitted to a Birch–
Murnaghan equation of state [30]

Etot =
4∑

m=1

cma2−m (22)

with four parameters cm determined by least square
minimization. Table 2 shows the total energy minimum,
the equilibrium lattice parameter and the bulk modulus at
the equilibrium lattice parameter obtained from the fitted
equation of state. The calculated lattice parameters agree to

Table 2. Calculated equilibrium lattice parameters a, bulk moduli B
and minima Emin of the total energy of CrAs for the charge densities
ρ̃, ρλ and ρλ defined in the text.

Density a (nm) B (GPa) Emin (Ryd)

ρ̃ 0.5495 59.3 −6550.194 504
ρλ 0.5519 56.3 −6550.202 115
ρλ 0.5493 57.5 −6550.180 716

within 0.5% and the bulk moduli, which are usually more
sensitive to numerical approximations, to within 5%. The
agreement indicates that for the calculation of equilibrium
lattice parameters and bulk moduli it is relatively unimportant
how charge neutrality is obtained. This insensitivity is
probably a general trend and explains why previous KKR
Green-function results for semiconductors [31], which were
calculated without using Lloyd’s formula, were found to be
in accurate agreement with the results of full potential linear
augmented plane-wave (FLAPW) calculations.

5.2. Ga1−xMnx N

The dilute magnetic semiconductor Ga1−x Mnx N was treated
in supercell geometry. The zincblende structure with lattice
parameter a = 0.452 nm was preferred to the more
complicated wurtzite structure since rather similar charge
density normalization effects are expected in both structures.
Two supercell sizes with 16 and 32 atoms corresponding to Mn
concentrations of x = 1/8 and 1/16 were investigated. The
supercell with 32 atoms was chosen identical to the one used
by de Paiva et al [32] (displayed in figure 1 of their paper). The
supercell with 16 atoms was chosen to be half as wide in the
x direction. Local relaxations caused by the Mn atoms were
not considered, since according to [33] they have a negligible
effect on the electronic and magnetic properties and they are
not important for the present illustrative purpose.

In dilute magnetic semiconductors the states available at
the Fermi level arise from the magnetic impurities inserted
into the semiconductors. If charge neutrality is enforced
by a Fermi level shift, the occupancy of the impurity states
changes, whereas almost no change occurs in the occupancy
of the semiconducting states. In Mn-doped GaN only minority
spin states are available at EF and by a Fermi level shift the
magnetic moment changes. The change can be very large if
the amount of Mn impurities is very small. For instance, if the
Green function is truncated at lmax = 3, the number-of-states
error [7] per GaN unit cell is 0.052. This leads to a reduction of
the number of occupied Mn majority states by about 0.052/x
if charge neutrality is obtained by a Fermi level shift. The
estimated total magnetic moment per unit cell is then about
3.6 μB for x = 1/8 and 3.2 μB for x = 1/16. These estimates
agree rather well with the calculated results shown in table 3 for
the charge density ρ̃. Thus the use of a Fermi level adjustment
to obtain charge neutrality leads to unacceptably large errors of
the magnetic moment.

The unphysical reduction of the magnetic moment is
avoided if the Fermi level is determined by Lloyd’s formula
and if normalization factors for the KKR Green function are

6
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Table 3. Local magnetic moments Mloc inside the Mn cell and total
magnetic moments Mtot in Ga1−x Mnx N supercells calculated for the
charge densities ρ̃, ρλ and ρλ defined in the text.

x = 1/8 x = 1/16

Density Mloc (μB) Mtot (μB) Mloc (μB) Mtot (μB)

ρ̃ 3.063 3.598 2.858 3.183
ρλ 3.283 4.000 3.289 3.999
ρλ 3.267 4.000 3.274 4.000

used to obtain charge neutrality as described above. This is
seen in table 3, where the total moments have the expected
integer value 4 μB for the charge densities ρλ and ρλ. As above
for CrAs, it is not important whether the Green function is
normalized by factors which vary along the integration contour
or by factors which are chosen in an average way. The local
moments inside the Mn cell exhibit the same trend as the total
moments with an unphysical reduction of about 0.2 μB and
0.4 μB if the Fermi level is adjusted.

The difference in the magnetic moment is associated with
a difference in the density of states, since the spin splitting of
the density of states is essentially determined by the product
of the magnetic moment with the almost constant exchange
integral. The effect is clearly seen in figure 2, where the
local density of states inside the Mn cell is plotted for energies
in the vicinity of the Fermi level. Whereas the density
of the states obtained by Green-function normalization is in
good agreement with previous LDA calculations [34–37], the
density of the states obtained by Fermi level adjustment is
considerably different. The majority states are then shifted to
higher energies by about 0.15 eV and the minority states to
lower energies by about 0.35 eV so that the spin splitting is
reduced by about 0.5 eV in line with the reduced moment.
Figure 2 shows almost no difference between the densities
of states calculated with the two different normalizations of
the Green function. Thus for a good description of the Mn
states in Ga15MnN16 it is important that the Fermi level is
determined correctly, for instance by Lloyd’s formula, and that
the charge density is consistent with this Fermi level, whereas
it is relatively unimportant how the normalization factors for
the Green function are chosen.

5.3. Si12Fe8

In metal–semiconductor junctions the adjustment of the Fermi
level to obtain charge neutrality leads to large errors for the
energetic positions of the semiconducting states in the junction.
Away from the interface the metallic and semiconducting
regions of the junction should approach their bulk like
behaviour. This means that in the inner layers of the
semiconducting region the Fermi level should be positioned in
the gap which cannot be obtained if the Fermi level is adjusted
to obtain charge neutrality. For instance, a calculation with
lmax = 3 puts the Fermi level into the upper part of the valence
band of Si and consequently raises the semiconducting states
in the junction compared to the metallic states. This unphysical
band bending effect is particularly troubling for systems with
many layers for which the tight-binding (TB) version of the

Figure 2. Calculated local density of states as a function of energy
relative to EF for the Mn atom in a Ga15MnN16 supercell. The
dashed, solid and dotted lines were calculated for the charge densities
ρ̃, ρλ and ρλ defined in the text. The majority (minority) spin results
are shown in the upper (lower) part of the figure. Note that the dotted
and solid lines nearly fall on top of each other so that the dotted lines
are hardly visible.

KKR Green-function method would be an ideal tool since
its computing effort scales only linearly with the number of
layers [38].

The questions of how the band bending can be avoided
and how the TB-KKR method can be applied for systems
with many semiconducting layers were the main motivation
for the present work. The example considered here was a
periodically repeated system consisting of twelve Si layers and
four Fe layers stacked in the 100-direction. A perfect matching
was assumed between the bcc structure of Fe with lattice
parameter a = 0.2754 nm chosen as in [39] and the diamond
structure of Si with a = 0.5508 nm chosen twice as large.
Geometrically, the system is rather simple since the diamond
lattice can be obtained from the bcc lattice by omitting every
second atom. Each Fe layer contained two Fe atoms and each
Si layer one Si atom and one empty sphere, which was used
to improve the angular momentum convergence. As above for
Ga1−x Mnx N any relaxation of the atoms in the interface region
was neglected.

Figure 3 shows the calculated local densities of states
inside the cells of the Fe and Si atoms with largest distance
from the interface. The behaviour of the Fe and Si states is
quite different. Whereas the different ways to obtain charge
neutrality lead to barely visible changes for the Fe states, the
Si states are clearly affected. Fermi level adjustment leads to
Si states which are about 0.3 eV higher in energy than the Si
states calculated with normalization factors which vary along
the integration contour. For the charge density obtained with a
constant normalization factor the shift of the Si states to higher
energies is partly reduced, but still amounts to about 0.1 eV.

Under the assumption that the main reason for the shift of
the states can be attributed to a change of the average potential
in the atomic unit cell, the energy of the core levels is a useful

7
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Figure 3. Calculated local density of states for the Fe and Si atoms with largest distance from the interface in a periodic Si12Fe8 multilayer as
a function of energy relative to EF. The dashed, solid and dotted lines were calculated for the charge densities ρ̃, ρλ and ρλ defined in the text.
The majority (minority) spin results are shown in the upper (lower) part of the figure. Note that different scales are used for the left and right
picture and that for Fe the different lines nearly fall on top of each other.

Figure 4. Calculated 1s core level energies relative to the Fermi level in a Si12Fe8 periodic multilayer. The dashed, solid and dotted lines were
calculated for the charge densities ρ̃, ρλ and ρλ defined in the text.

measure for analysing the effect of the normalization of the
Green function in the different layers of the multilayer, since
the core states respond to the average potential in a similar
way as the valence and conduction states. The energies of
the 1s states are plotted in figure 4, which shows that away
from the interface the energy of Si 1s states is almost constant
if the Green function is normalized along the integration
contour with factors determined by Lloyd’s formula, whereas
Fermi level adjustment clearly produces a band bending
with an upward shift of about 0.3 eV in the middle of the
semiconducting region in agreement with the DOS in figure 3.
The size of the unphysical band bending is reduced to a
maximum of about 0.1 eV in the middle of the semiconducting
region, if the Green function is simply multiplied by a constant
factor determined from the total charges calculated with and
without Lloyd’s formula. This shows that such a simple
multiplication, which worked well to obtain integer moments

for half-metallic CrAs and in Ga1−x Mnx N, is not sufficient to
obtain a correct alignment of the states in metal–semiconductor
junctions. For that purpose a Green-function normalization for
each energy on the integration contour with factors determined
by Lloyd’s formula was found to be necessary.

6. Conclusion

A normalization procedure for the KKR Green-function
method was developed which is able to compensate the
charge density error which arises from the angular momentum
truncation of the multiple-scattering representation of the
Green function. The procedure is based on the use of
Lloyd’s formula to determine the Fermi level and to calculate
normalization factors, which can be used to normalize the KKR
Green function along complex energy integration contours.
It was shown how the difficulty arising from the divergence
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of the real part of the Green function can be circumvented
and that the normalization procedure improves the charge
density so that integer moments for a half-metallic system and
correct band alignments in metal–semiconductor junctions can
be calculated. It is expected that the improved charge density
will be particularly useful for dilute magnetic semiconductors
treated by the KKR coherent potential approximation (KKR-
CPA) and for thick metal–semiconductor junctions treated by
the TB-KKR Green-function method since in these systems a
correct normalization is indispensable for avoiding large errors
in the electronic states.
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Appendix A. �α and �t matrices

These matrices are defined as

�αn
L L ′(E) = δL L ′ +

∫
n

dr Sr,n
L (r; E)[V n(r) − V r,n(r)]

× Rn
L ′(r; E) (A.1)

and

�tn
L L ′(E) =

∫
n

dr Rr,n
L (r; E)[V n(r) − V r,n(r)]

× Rn
L ′(r; E). (A.2)

For the special choice of free space as reference system these
definitions agree with the usual expressions

αn
L L ′(E) = δL L ′ +

∫
n

dr HL(r; E)V n(r)Rn
L ′(r; E) (A.3)

and

tn
L L ′(E) =

∫
n

dr JL(r; E)V n(r)Rn
L ′ (r; E). (A.4)

In the equations above Sr,n
L and Rr,n

L are regular and irregular
single-scattering solutions of the reference system and Rn

L
regular single-scattering solutions of the system. They are
defined by integral equations

Sr,n
L (r; E) =

∑
L ′

β
r,n
L L ′(E)HL ′(r, E)

+
∫

n
dr′Sr,n

L (r′; E)V n(r′)G0(r′, r; E) (A.5)

Rr,n
L (r; E) = JL(r; E)

+
∫

n
dr′ Rr,n

L (r′; E)V r,n(r′)G0(r′, r; E) (A.6)

Rn
L ′(r; E) = JL ′(r; E)

+
∫

n
dr′G0(r, r′; E)V n(r′)Rn

L ′(r; E), (A.7)

where the matrix βr,n is defined as

β
r,n
L L ′(E) = δL L ′ −

∫
n

dr Sr,n
L (r; E)V r,n(r)JL ′(r; E). (A.8)

Note that in (A.6) the symmetry G0(r′, r; E) = G0(r, r′; E)

was used and that (A.6) is given in a form which is useful
below.

For the calculations it is convenient that the changes �α

and �t can be expressed in terms of α and t matrices of
system and reference systems without the need to evaluate the
additional integrals in (A.1) and (A.2). These expressions are

�tn
L L ′(E) = tn

L L ′(E) − tr,n
L L ′(E) (A.9)

and ∑
L ′′

α
r,n
L L ′′(E)�αn

L ′′ L ′(E) = αn
L L ′(E), (A.10)

which by taking determinants and logarithms leads to the result

ln det |�αn
L L ′(E)| = ln det |αn

L L ′(E)| − ln det |αr,n
L L ′(E)|

(A.11)
which was used for the evaluation of Lloyd’s formula (9). The
equivalence of (A.9) with (A.2) can be shown, if the function
Rr,n

L , which multiplies V n in (A.2), is replaced by the right-
hand side of (A.6) and if the function Rn

L ′ , which multiplies
V r,n , is replaced by the right-hand side of (A.7). This leads to

�tn
L L ′(E) =

∫
n

dr JL(r; E)V n(r)Rn
L ′(r; E)

+
∫

n
dr

∫
n

dr′ Rr,n
L (r′; E)V r,n(r′)G0(r′, r; E)

× V n(r)Rn
L ′(r; E)

−
∫

n
dr Rr,n

L (r; E)V r,n(r)JL ′(r; E)

−
∫

n
dr

∫
n

dr′ Rr,n
L (r; E)V r,n(r)G0(r, r′; E)

× V n(r′)Rn
L ′(r′; E). (A.12)

Here second and fourth terms cancel, the first term agrees with
(A.4) and the third term agrees with tr,n

L ′ L(E) and thus, because
t matrices are symmetric matrices, with tr,n

L L ′(E). Similarly to
(A.12), again by cancellation of terms with double integrals,
the result

�αn
L L ′(E) = δL L ′ +

∑
L ′′

β
r,n
L L ′′(E)

×
∫

n
dr HL ′′(r; E)V n(r)Rn

L ′(r; E)

−
∫

n
dr Sr,n

L (r; E)V r,n(r)JL ′(r; E) (A.13)

is obtained from (A.1) by use of (A.5) and (A.7). Here the first
integral agrees with αn

L ′′ L ′(E) − δL ′′L ′ and the second integral
with δL L ′ − β

r,n
L L ′(E). Thus, in matrix notation, (A.13) can

written as �α = 1 + βr (α − 1) − (1 − βr ), which simplifies
to �α = βrα. This result is equivalent to (A.10), since β

matrices are inverses of α matrices as has been shown in [11].

Appendix B. Free space correction term

A straightforward way to avoid the infinite sum in (17) seems
to remove the Hankel functions in terms of Bessel functions by

9



J. Phys.: Condens. Matter 20 (2008) 035220 R Zeller

Im
[
ih(1)

l (r
√

E) jl(r
√

E)
]

=
{

j 2
l (r

√
E) for E > 0

0 for E < 0,
(B.1)

which is valid for real energy E , and to use

m∑
−m

Ylm(r̂)Ylm(r̂) = 2l + 1

4π
(B.2)

and ∞∑
l=0

(2l + 1) j 2
l (r

√
E) = 1. (B.3)

This leads to

Im

[ ∞∑
l>lmax

JL(r; E)HL(r; E)

]

= − 1√
E

4π

[
1 −

lmax∑
l=0

j 2
l (r

√
E)

]
. (B.4)

Although the analytical continuation of the right-hand side
of (B.4) into the complex energy plane is straightforward, it
cannot be used for the calculation of normalization factors,
since it significantly differs from the left-hand side of (B.4)
and, moreover, since it was found to lead to normalization
factors with unpleasant values far from one. Nevertheless, the
left-hand side of (B.4) can easily be integrated over space and
energy and its contribution to the total charge is rather small.
For the systems studied its value was always less than 0.000 65
and 0.000 02 for lmax = 3 and lmax = 4. Thus the two-step
procedure explained above (see (18) and (19)) seems to be well
justified, in particular because of its rapid lmax convergence.

Appendix C. Cell integration of the charge density

Charge density integration over a cell is done by multiplying
the integrand with a step function �n(r), which is equal to 1
in the cell n and zero otherwise. This enables to extend the
integration over all space

∫
n

dr ρ̃(r + Rn) =
∫

dr�n(r)ρ̃(r + Rn). (C.1)

By use of the spherical harmonic expansions

�n(r) =
∑

L

�n
L(r)YL(r) (C.2)

and

ρ̃(r + Rn) =
2lmax∑

L

ρ̃n
L(r)YL (r) (C.3)

the result

∫
n

dr ρ̃(r + Rn) =
∫ ∞

0
drr 2

2lmax∑
L

�n
L(r)ρ̃n

L(r) (C.4)

follows. Here it is important to note that (C.3) only contains
terms with l � 2lmax, which by orthogonality of spherical
harmonics leads to the finite sum in (C.4). The cut-off at
2lmax in (C.3) is a natural consequence of lmax truncation

for the Green function. This can be seen if the expansion
G0(r, r′; E) = ∑

L YL (r)gl(r, r ′; E)YL(r′) for the free space
Green function, truncated to terms with l � lmax, and
JL ′(r; E) = jl′(r

√
E)YL ′(r) are used in (A.7). The right-hand

side of (A.7) is then given as a finite combination of spherical
harmonics YL (r) multiplied with functions which depend on
the radial variable r alone. This means that Rn

L ′(r; E) can be
written as

Rn
L ′(r; E) =

lmax∑
L

YL (r)Rn
L L ′(r; E) (C.5)

and that the Green function (4) can represented as a
finite double sum over products of spherical harmonics.
Consequently, the charge density can be represented as

ρ̃(r + Rn) =
lmax∑
L ′

lmax∑
L ′′

YL ′(r)ρ̃n
L ′ L ′′(r)YL ′′(r), (C.6)

from which the expansion coefficients ρ̃n
L (r) for use in (C.3)

are found by multiplication with YL(r) and integration over
the angles. Since angular integrals over the three spherical
harmonics vanish for l > l ′ + l ′′, coefficients ρ̃n

L (r) with
l > 2lmax do not appear in (C.3). This means that apart from the
angular momentum truncation of the Green function no further
approximation is necessary for the charge density integrals.

Appendix D. Complex energy contour

The contour starts on the negative real energy axis at energy
E A, which is chosen below the valence and above the core
states. From E A the contour goes to EB = E A + 2N iπkT ,
where N is a chosen integer, on a line parallel to the imaginary
axis and from EB to infinity on a line parallel to the real
axis. Compared to the integral along the real axis from E A

to infinity, the integral along the contour omits the residues at
the first N Matsubara energies En = EF + (2n − 1)iπkT with
n = 1, 2, . . . , N , which must be added to the contour integral
separately. The contour from EB to infinity is divided into a
part from EB to EC = EF − 30kT + 2N iπkT and a part from
EC to infinity. For the integration from EC to infinity a special
four-point Gauss rule for the Fermi–Dirac weight function was
developed according to the description given in [40]. Standard
Gauss–Legendre rules were used between E A and EB with
five points and between EB and EC with 16 points except
for Ga1−x MnxN, where 24 points were necessary for accurate
integration over the Ga 3d states. Note that the Fermi–Dirac
function can be neglected between EB and EC , where it differs
from one by less than 10−13. With the choice N = 15 the total
number of mesh points was 48 for Ga1−x MnxN and 40 for the
other systems.
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